
django-appconf Documentation
Release dev

Jannis Leidel and individual contributors

January 28, 2013





CONTENTS

i



ii



django-appconf Documentation, Release dev

A helper class for handling configuration defaults of packaged Django apps gracefully.

CONTENTS 1

http://travis-ci.org/jezdez/django-appconf


django-appconf Documentation, Release dev

2 CONTENTS



CHAPTER

ONE

OVERVIEW

Say you have an app called myapp with a few defaults, which you want to refer to in the app’s code without repeating
yourself all the time. appconf provides a simple class to implement those defaults. Simply add something like the
following code somewhere in your app files:

from appconf import AppConf

class MyAppConf(AppConf):
SETTING_1 = "one"
SETTING_2 = (

"two",
)

Note: AppConf classes depend on being imported during startup of the Django process. Even though there are
multiple modules loaded automatically, only the models modules (usually the models.py file of your app) are
guaranteed to be loaded at startup. Therefore it’s recommended to put your AppConf subclass(es) there, too.

The settings are initialized with the capitalized app label of where the setting is located at. E.g. if your models.py
with the AppConf class is in the myapp package, the prefix of the settings will be MYAPP.

You can override the default prefix by specifying a prefix attribute of an inner Meta class:

from appconf import AppConf

class AcmeAppConf(AppConf):
SETTING_1 = "one"
SETTING_2 = (

"two",
)

class Meta:
prefix = ’acme’

The MyAppConf class will automatically look at Django’s global settings to determine if you’ve overridden it. For
example, adding this to your site’s settings.py would override SETTING_1 of the above MyAppConf:

ACME_SETTING_1 = "uno"

In case you want to use a different settings object instead of the default ’django.conf.settings’, set the
holder attribute of the inner Meta class to a dotted import path:

from appconf import AppConf

class MyAppConf(AppConf):

3



django-appconf Documentation, Release dev

SETTING_1 = "one"
SETTING_2 = (

"two",
)

class Meta:
prefix = ’acme’
holder = ’acme.conf.settings’

If you ship an AppConf class with your reusable Django app, it’s recommended to put it in a conf.py file of your
app package and import django.conf.settings in it, too:

from django.conf import settings
from appconf import AppConf

class MyAppConf(AppConf):
SETTING_1 = "one"
SETTING_2 = (

"two",
)

In the other files of your app you can easily make sure the settings are correctly loaded if you import Django’s settings
object from that module, e.g. in your app’s views.py:

from django.http import HttpResponse
from myapp.conf import settings

def index(request):
text = ’Setting 1 is: %s’ % settings.MYAPP_SETTING_1
return HttpResponse(text)

4 Chapter 1. Overview



CHAPTER

TWO

INSTALLATION

Install django-appconf with your favorite Python package manager, e.g.:

pip install django-appconf

5



django-appconf Documentation, Release dev

6 Chapter 2. Installation



CHAPTER

THREE

CONTENTS

3.1 Usage

It’s strongly recommended to use the usual from django.conf import settings in your own code to access
the configured settings.

But you can also OPTIONALLY use your app’s own settings object directly, by instantiating it in place:

from myapp.models import MyAppConf

myapp_settings = MyAppConf()

print myapp_settings.SETTING_1

Note that accessing the settings that way means they don’t have a prefix.

AppConf instances don’t automatically work as proxies for the global settings. But you can enable this if you want
by setting the proxy attribute of the inner Meta class to True:

from appconf import AppConf

class MyAppConf(AppConf):
SETTING_1 = "one"
SETTING_2 = (

"two",
)

class Meta:
proxy = True

myapp_settings = MyAppConf()

if "myapp" in myapp_settings.INSTALLED_APPS:
print "yay, myapp is installed!"

In case you want to override some settings programmatically, you can simply pass the value when instantiating the
AppConf class:

from myapp.models import MyAppConf

myapp_settings = MyAppConf(SETTING_1=’something completely different’)

if ’different’ in myapp_settings.SETTINGS_1:
print "yay, I’m different!"

7



django-appconf Documentation, Release dev

3.1.1 Custom configuration

Each of the settings can be individually configured with callbacks. For example, in case a value of a setting depends
on other settings or other dependencies. The following example sets one setting to a different value depending on a
global setting:

from django.conf import settings
from appconf import AppConf

class MyCustomAppConf(AppConf):
ENABLED = True

def configure_enabled(self, value):
return value and not settings.DEBUG

The value of MYAPP_ENABLED will vary depending on the value of the global DEBUG setting.

Each of the app settings can be customized by providing a method configure_<lower_setting_name> that
takes the default value as defined in the class attributes of the AppConf subclass or the override value from the global
settings as the only parameter. The method must return the value to be use for the setting in question.

After each of the *_configure methods have been called, the AppConf class will additionally call a main
configure method, which can be used to do any further custom configuration handling, e.g. if multiple settings
depend on each other. For that a configured_data dictionary is provided in the setting instance:

from django.conf import settings
from appconf import AppConf

class MyCustomAppConf(AppConf):
ENABLED = True
MODE = ’development’

def configure_enabled(self, value):
return value and not settings.DEBUG

def configure(self):
mode = self.configured_data[’MODE’]
enabled = self.configured_data[’ENABLED’]
if not enabled and mode != ’development’:

print "WARNING: app not enabled in %s mode!" % mode
return self.configured_data

Note: Don’t forget to return the configured data in your custom configure method if you edit it.

3.2 Reference

class appconf.AppConf
A representation of a template tag. For example:

class MyAppConf(AppConf):
SETTING_1 = "one"
SETTING_2 = (

"two",
)

8 Chapter 3. Contents



django-appconf Documentation, Release dev

configure_*(value)
Method for each of the app settings for custom configuration which gets the value passed of the class
attribute or the appropriate override value of the holder settings, e.g.:

class MyAppConf(AppConf):
DEPLOYMENT_MODE = "dev"

def configure_deployment_mode(self, value):
if on_production():

value = "prod"
return value

The method must return the value to be use for the setting in question.

class AppConf.Meta
An AppConf takes options via a Meta inner class:

class MyAppConf(AppConf):
SETTING_1 = "one"
SETTING_2 = (

"two",
)

class Meta:
proxy = False
prefix = ’myapp’
required = [’SETTING_3’, ’SETTING_4’]
holder = ’django.conf.settings’

prefix
Explicitly choose a prefix for all settings handled by the AppConf class. If not given, the prefix will be
the capitalized class module name.

For example, acme would turn into settings like ACME_SETTING_1.

required
A list of settings that must be defined. If any of the specified settings are not defined,
ImproperlyConfigured will be raised. New in version 0.6.

holder
The global settings holder to use when looking for overrides and when setting the configured values.

Defaults to ’django.conf.settings’.

proxy
A boolean, if set to True will enable proxying attribute access to the holder.

3.3 Changelog

3.3.1 0.6 (2013-01-28)

• Added required attribute to Meta to be able to specify which settings are required to be set.

• Moved to Travis for the tests: http://travis-ci.org/jezdez/django-appconf

• Stopped support for Django 1.2.X.

• Introduced support for Python >= 3.2.

3.3. Changelog 9

http://travis-ci.org/jezdez/django-appconf


django-appconf Documentation, Release dev

3.3.2 0.5 (2012-02-20)

• Install as a package instead of a module.

• Refactored tests to use django-jenkins for enn.io‘s CI server.

3.3.3 0.4.1 (2011-09-09)

• Fixed minor issue in installation documentation.

3.3.4 0.4 (2011-08-24)

• Renamed app_label attribute of the inner Meta class to prefix. The old form app_label will work in
the meantime.

• Added holder attribute to the inner Meta class to be able to specify a custom “global” setting holder. Default:
“‘django.conf.settings”’

• Added proxy attribute to the inner Meta class to enable proxying of AppConf instances to the settings holder,
e.g. the global Django settings.

• Fixed issues with configured_data dictionary available in the configure method of AppConf classes
with regard to subclassing.

3.3.5 0.3 (2011-08-23)

• Added tests with 100% coverage.

• Added ability to subclass Meta classes.

• Fixed various bugs with subclassing and configuration in subclasses.

3.3.6 0.2.2 (2011-08-22)

• Fixed another issue in the configure() API.

3.3.7 0.2.1 (2011-08-22)

• Fixed minor issue in configure() API.

3.3.8 0.2 (2011-08-22)

• Added configure() API to AppConf class which is called after configuring each setting.

3.3.9 0.1 (2011-08-22)

• First public release.

10 Chapter 3. Contents

https://github.com/kmmbvnr/django-jenkins
http://enn.io
https://ci.enn.io/job/django-appconf/

